
A Method to Determine Diffusion Particle Properties for Use in Optical Simulation Ryan Kelley, LTI Optics, ryan@ltioptics.com

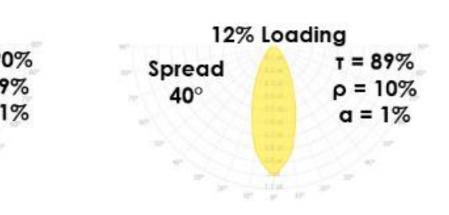
THE CHALLENGE

Milky white plastics are commonly used in illumination optics to provide a desired beam spread and light source hiding. Material manufacturers keep the data on the diffusion particles proprietary, which makes optical simulation of these particles at arbitrary density and part geometry impossible. While it is possible to measure samples at 8% and 12% for example, there is no way to predict how 10.5% will perform in a part that ranges in thickness from 0.5 to 3mm.

Diffusion B Test Results

Measure Scattering for 3 **Reference Particle Densities**

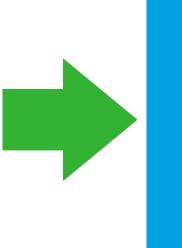
Scatter, reflectance, transmittance and absorption is measured for the material at 3 different known loading values, 4%, 8% and 12% in this example.


> 4% Loading т = 92% Spread ρ = 7% 10° a = 1% 8% Loading T = 90% Spread p = 9%31° a = 1% 12% Loading т = 89% Spread ρ = 10% 40° a = 1% 1.45

> > 1110

10 10 10

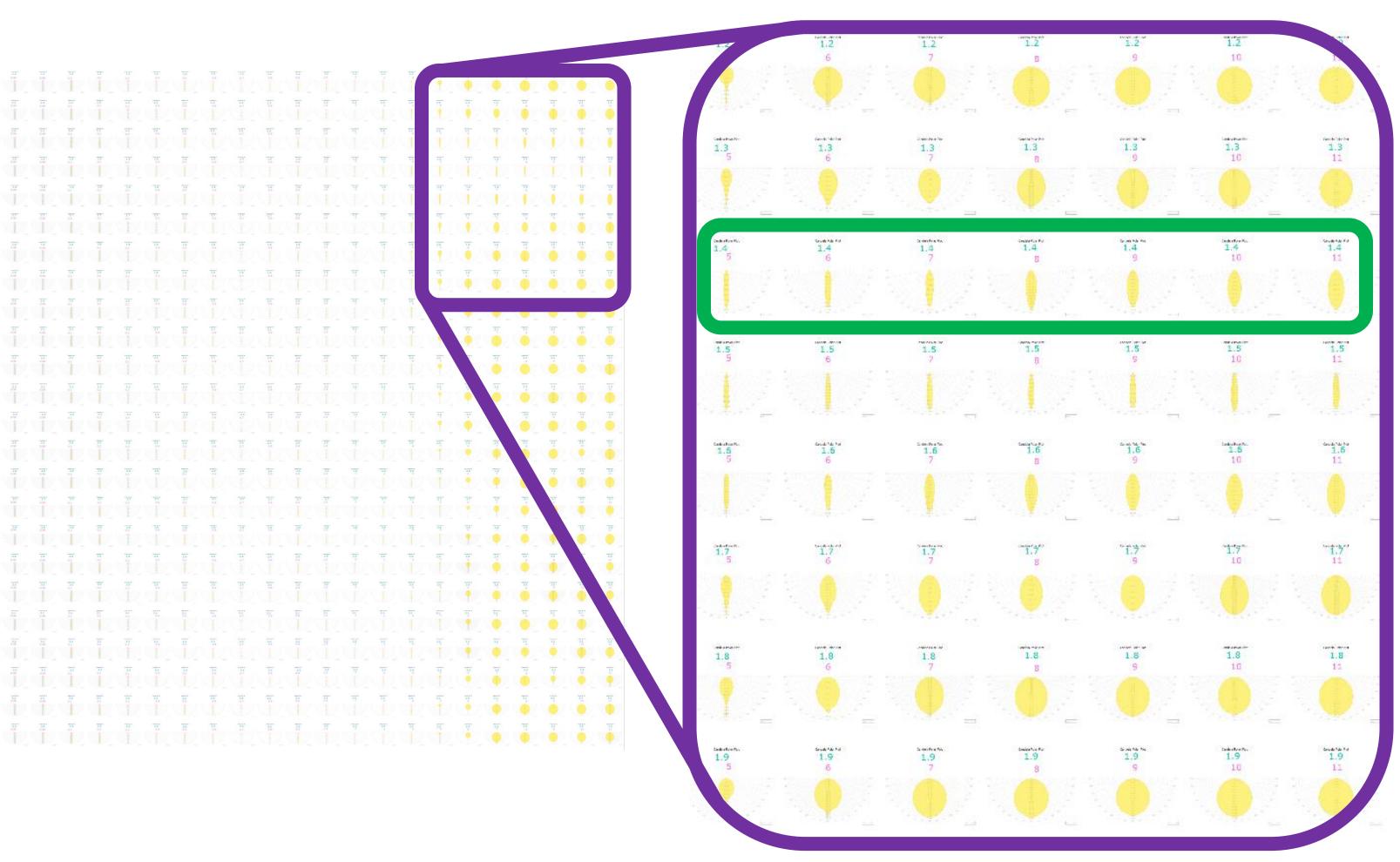
13	T	11 134 1	13	13	
	11	E.	12.5	71	13
H	H	T.	iden.	K	14
E.		15	TE.		a l
		15.	1	W	
a	11	E.	Tra I	T.	*
10	1		Han I	14 155 11	1
	22		145 655	14 14 10 10 10 10	77
1	21 	10.	**** 	20 6 cm	1
		211		11 115	
222 5.62	22 13		23 555	2.2 6.25	Ï
32	23	13	<u>8</u>	24	23
122	12	24	11.	24 615	14
	24	1	11	28	10
25	28	H.	E.	28	10
127	2) 6.53		E.		27
	37	II.		-24	37
29	28	23 1.54	22	23 6 01	23 (1)
30	3 4	iii.	185 	30 6 m	3.0 6.07
	M	37.a	ag _{es}	H.	11
	28	112			
II II II II		11	H.		11) 127
M	M	15	¥.	14	34 10
117	14 613	25	125	11	13

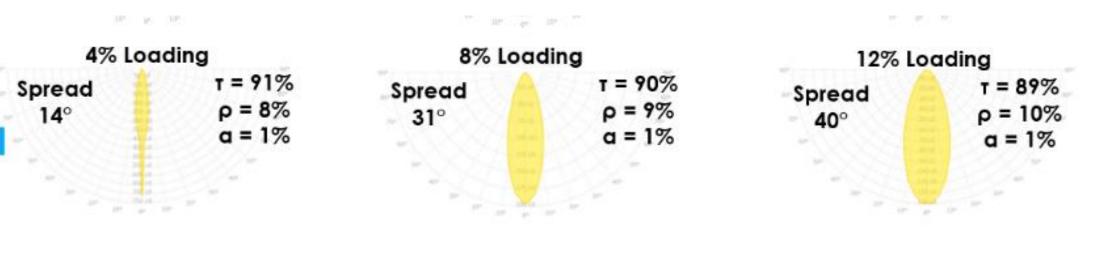


THE SOLUTION

Combining the measurement of 3 material samples at different densities along with a wide range of probable particle simulations allows one to determine scatter particle properties that most closely match the tested material, thus allowing a scattering model to be constructed of the material, allowing simulation at any particle density and part thickness.

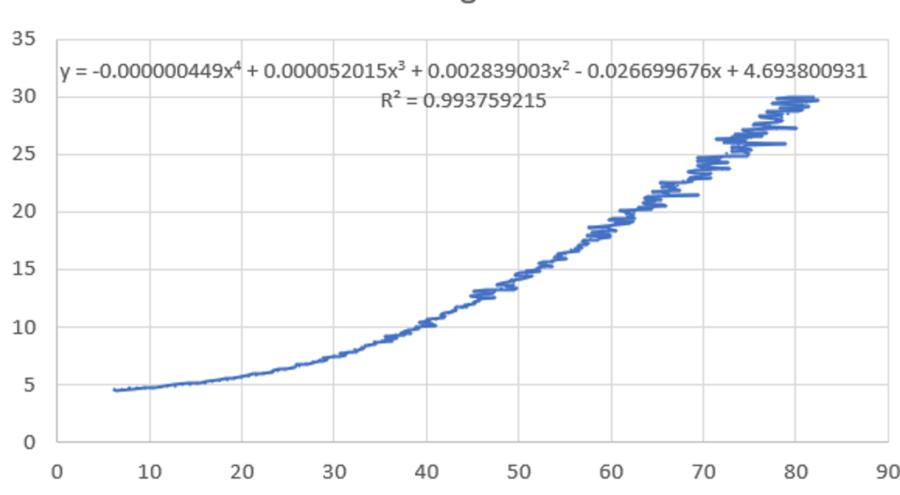
Diffusion B Simulation Mode


Simulate a wide range of possible scatter particles


Identify Scatter Particle Type

A wide range of simulations is completed for scatter particles that have different properties, like index of refraction, shape, texture, and scatter coefficient.

A finer set of simulations is completed for the best scatter particle type match to cover a more precise range of variables.



Determine % Loading vs. **Optical Model Parameters**

From this set of data, regression fits are created to correlate the known % loading to optical modeling parameters such as scatter coefficient, index, shape, or texture. This allows the creation of a computational scatter model.

Beam Angle - 1.42

Optica Design and Fabrication Congress 04-08 June 2023 Quebec City, Quebec, Canada

